Fault classification using an Artificial Neural Network based on Vibrations from a Reciprocating Compressor
نویسنده
چکیده
Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade performance, consume additional energy, and even cause severe damage to the machine. This paper will develop an automated approach to condition classification of a reciprocating compressor based on vibration measurements. Both the time domain and frequency domain techniques have been applied to the vibration signals and a large number of candidate features have been obtained based on previous studies. A subset selection method has then been used to configure a probabilistic neural network (PNN), with high computational efficiency, for effective fault classifications. The results show that a 95.50% correct classification between four different faulty cases is the best result when using a subset of frequency feature, whereas a 93.05% rate is the best for the subset from the time domain.
منابع مشابه
Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملFeature Selection and Fault Classification of Reciprocating Compressors using a Genetic Algorithm and a Probabilistic Neural Network
Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade their performance, consume additional energy and even cause severe damage to the machine. Vibration monitoring techniques are often used for early fault detection and diagnosis, but it is difficult to prescribe a given set of effective diagnostic features because of the wide varie...
متن کاملVibration Analysis of an Air Compressor Based on a Hypocycloidal Mechanism: an Experimental Study
In this paper, the experimental vibration analysis of a single cylinder air compressor based on a hypocycloid straight line mechanism (HSM) is investigated. The HSM mechanism uses planetary gears to convert rotational motion to purely linear motion. In the conventional air compressor, the slider- crank mechanism is replaced by the HSM mechanism with appropriate counterweights. The constructed s...
متن کاملAn Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کاملStator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016